Artificial Neural Networks for Power Transformers Fault Diagnosis Based on IEC Code Using Dissolved Gas Analysis
نویسندگان
چکیده
Transformer is the main important equipment in electrical power system. Early stage detection of the transformer faults has great economic significance because it considered expensive equipment and it helps to maintain the continuous operation of the electrical power system. Transformer oil is used for two main purposes, one for insulating liquid and the other for cooling. Some physicalchemical tests are carried out to determine the physical and chemical properties of the oil. Dissolved Gas Analysis (DGA) is now considered a common practice method for detection of the transformer incipient fault. This paper focuses on the employment of the Artificial Neural Network techniques (ANN) to diagnose dissolved gas in transformers, in order to determine the fault causes based on the IEC standard method. The ANN on IEC Code results meets the similar results of the other techniques that use to diagnose the transformer fault. Therefore, this method is very reliable to use as a diagnostic tool for transformer fault detection. Keywords—Transformer faults, Dissolved gas analysis,
منابع مشابه
ارائه یک سیستم ترکیبی جدید در تشخیص نوع خطا در ترانسفورماتورهای قدرت براساس مقادیر گازهای حل شده در روغن
Transformers are one of the important and at the same time expensive components of power systems. On timely diagnosis of fault in such systems is still among the researchers interest. Fault diagnosis of transformers based on the dissolved gas analysis is a new technique in the field of fault diagnosis of power transformers. IEC, Roger’s and Dornenburg techniques are the mostly used techni...
متن کاملA New Approach for Transformer Incipient Fault Diagnosis Based on Dissolved Gas Analysis (DGA)
Transformer incipient fault diagnostic method based on dissolved gas analysis (DGA) using Artificial Neural Networks (ANN) and Neural-Imperialistic Competitive Algorithm (Nero-ICA) hybrid approach is simulated in this paper and the results has been compared with IEC standard. Firstly, dissolved gas analysis method and IEC DGA standard has been presented. In the second step, application of ANN a...
متن کاملAnalysis of Power Transformer using fuzzy expert and neural network system
Power transformers being the major apparatus in a power system, thus the assessment of transformer operating condition and lifespan have obtained crucial significance in latest years. Dissolved gas analysis (DGA) is a sensitive and reliable technique for the detection of incipient fault condition within oil-immersed transformers, which provides the basis of diagnostic evaluation of equipment he...
متن کاملFuzzy Decision on Transformer Fault Diagnosis using Dissolved Gas Analysis and IEC Ratio Codes
This paper emphasizes on the use of fuzzy approach in dealing with the incipient fault conditions of power transformer. DGA (Dissolved Gas in Oil Analysis) cannot provide better fault diagnosis results when multiple faults are involved. The boundary values specified by the ratio methods are of limited concern .Considering the limitations of convergence of the conventional neural networks in the...
متن کاملDiagnosis of incipient faults in power transformers using CMAC neural network approach
Dissolved gas analysis (DGA) is one of the most useful techniques to detect the incipient faults of power transformer. However, the identification of the faulted location by the traditional method is not always an easy task due to the variability of gas data and operational natures. In this paper, a novel cerebellar model articulation controller (CMAC) neural network (NN) method is presented fo...
متن کامل